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Abstract— The performance of a swarm of robots depends
on the hardware quality of the robots in the swarm. A swarm
of robots with high–quality sensors and actuators is expected
to out–perform a swarm of robots with low–quality sensors
and actuators. This paper directly investigates the relationship
between hardware quality and swarm performance. We take
three common components of swarm algorithms (trail following,
swarm expansion, and shape formation) and measure how they
are affected by two common types of hardware inaccuracy
(communication bearing reception error, and movement error)
both in simulation and with E-Puck robots. We find that large
amounts of both types of hardware error are required before
performance appreciably decreases.

I. INTRODUCTION

When constructing large swarms of robots, there is signif-
icant pressure for each robot to be simple and inexpensive.
Cost, power, and manufacturing concerns all drive swarm
robots toward fewer sensors, less computational capability,
and less accurate locomotion. Our research ultimately drives
toward swarms of robots that weigh ~5 g and cost ~$10
each. In this realm, every gram, penny, and milliwatt counts.
Locomotion tends to be unreliable (either from walking legs,
wheels, or vibration, for example), and there are few sensors
viable for these scales and costs[4], [1], [15]. Improving any
aspect of the hardware capabilities requires justification for
the increase in weight, price, or power consumption.

However, robots with such minimal capabilities may not
execute swarm algorithms well. For example, a robot may
not be able to reliably follow a path if its movement is 50%
random. The robots are under significant hardware pressure,
but must still execute the algorithms. This raises the question,
how good does the hardware have to be, or more generally,
what is the relationship between hardware quality and algo-
rithm performance? This is the central question addressed in
this paper. To address it, we will take several swarm tasks and
run them in simulation and on physical robots (E-Pucks) and
artificially degrade the hardware capabilities of the robots
while measuring the effect on in algorithm performance.

The swarm algorithms in the literature tend to be com-
posed of a few common primitive behaviors, such as trail
following, expansion, and shape formation [5], [11], [3]. A
foraging algorithm, for example, could combine expansion
(to find the target) with trail following (to return it to the
nest). A flocking algorithm could use shape formation to
form and maintain a flock, and homing (a special case of
trail following) to move the flock. A coverage algorithm
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could use expansion on its own, combined with appropriate
communication. Instead of measuring the effect of hardware
quality on a few specific swarm algorithms, we will measure
the effect on these three primitives in order to broaden the
applicability of the results.

We have chosen two specific types of hardware capability
to study. The first is the accuracy with which bearing data on
incoming local communications can be measured. In order
to coordinate with their neighbors, robots need to commu-
nicate and often need to measure the range and bearing to
their neighbors. Measuring bearing usually requires multiple
receivers arrayed around the robot. Using fewer sensors
would yield savings in space, complexity, and power, but
would yield a less accurate bearing measurement. The second
type of hardware degradation is movement accuracy. With
small robots, the locomotion tends to be imprecise. Making
robots which can accurately move and turn requires accurate
actuators and precision timing, or expensive feedback sensors
which eat up processing time, power, and weight. Noisy
open–loop locomotion would allow rough construction and
would eliminate the feedback sensors.

We have chosen a very common robot model: simple
tank steering and limited local communication. This model
matches well with the small scale robots we will ultimately
use, and is also common throughout the literature [17], [10],
[4], [1] (see examples in Figure 1). We vary the amount of
noise in robot movement, and the accuracy of the bearing
measurement on communication receptions.

We find that the hardware must degrade considerably
before a decrease in performance is observed. The tasks we
test generally exhibit only mild decreases in performance
even with ±20% movement error and 4 quadrants of bearing
reception. Degrading the hardware further from this point
causes large drops in performance. This suggests a design
point at which hardware is as degraded as possible without
appreciably impacting performance.

A. Related Work

Robustness and error tolerance are often–claimed as-
pects of multi–agent swarm algorithms [6], but quantitative
hardware–based confirmations are less common. Often, a
new algorithm is shown to perform well in the face of
the particular hardware imperfections already present in the
system ([17], [9]) or unplanned changes in the environment
([8], [18]), but it is not common for hardware quality to be
independently varied while performance is measured.



Fig. 1. An E-Puck robot with IR ring communication structure [12], [2],
a SWARM-BOT [10] (photos kindly provided by Marco Dorigo, project
coordinator), a Khepera II robot [13], and a crawling robot [1].

In one study which takes some hardware quality dependent
measurements, a coverage algorithm is shown to be robust
to some degradation in position measurement accuracy and
communication range [16]. In this case, position error is
modeled as a probability of calculating a completely ran-
dom position. It has also been shown for search tasks that
randomness of the target position and robot movement error
can increase the attractiveness of random algorithms relative
to coordinated ones [14]. We are not studying the benefit
of coordinated algorithms, but rather the effect of hardware
inaccuracies on the performance of coordinated algorithms.
Our approach also differs in that we study several primitive
behaviors rather than a few complete algorithms, covering a
broader space of algorithms.

There is little information published using physical robots
to measure the effect of the quality of a robot’s sensors and
actuators on the performance of common tasks running on
those robots. In this work, we systematically vary sensor and
actuator quality as the independent variable, and do this both
in simulation and hardware.

II. MODELS, TASKS, AND HARDWARE VARIABLES

A. Robot and Environment Models

We use a simple robot model consisting of tank–like
steering, a single forward–facing bump sensor, and the ability
to send and directionally receive simple messages (a single
byte) between robots within a small communication range.
When a robot receives a communication, it can measure the
range and bearing to the transmitting robot (see Figure 3).

The environment is modeled as a bounded region, possibly
with obstacles (which block both movement and communi-
cation). Robots can not occupy the same physical space, and
can not move obstacles. Snapshots of the model, both in
simulation and the physical testbed, are shown in Figure 2.

B. Task Descriptions

Trail Following Task: The goal of the trail following task
is for a robot to detect a trail marked by other robots, and
repeatedly traverse the trail from one endpoint to the other.
A set of robots is positioned to create a trail, remaining
stationary. The first robot sends a signal indicating it is the
start of the trail (perhaps the ‘nest’ in a foraging task, or
the base station in a search–and–rescue task), and the last
robot indicates that it is the end (the ‘food’ or ‘victim’).
The other robots that make up the trail broadcast integers
representing their hop–count from each end of the trail (see
Figure 2a). A ‘walker’ robot can navigate to either end by

Fig. 2. Subfigure (a) shows the trail following task mid–execution.
Subfigure (b) shows start and end configurations in the expansion task.
Subfigure (c) shows the final state of the line formation task in simulation
and on the robot testbed.

always moving toward the beacon with the smallest hop–
count. The hop–count trails are hard–coded into the robots
in these tests, so that the results focus solely on the trail–
following ability of the walker. Distributed algorithms for
developing the gradient are well known in general, and one
is described for this hardware specifically in [7].

When the walker robot senses an obstacle or another robot
in front of it (the bump sensors can not distinguish obstacles
from robots), it simply turns left until it can no longer sense
the obstruction, moves forward a short distance, then resumes
its previous navigation. This results in the walker walking
around obstacles to the left.

Our success metric for the trail following task will be the
number of complete traversals the walker is able to make in
10 minutes, capturing both correctness and speed. Once the
walker sees the robot marking the end, it turns around and
navigates to the start, and repeats. Moving from one side of
the trail to the other counts as a single traversal.



Expansion Task: In the expansion task, the swarm must
expand to cover as much of the world as possible while
maintaining a connected network of robot–to–robot com-
munication. Example starting and final configurations are
shown in Figure 2b. The expansion algorithm is simple:
if a robot can hear more than three neighbors, it moves
randomly, otherwise it remains stationary. Eventually, the
robots will have expanded from the starting point such that
each robot has three neighbors. If a search target were within
this covered area, the swarm would be able to find it, so we
are interested in how much area is covered by the swarm,
and how fast the swarm reaches this final coverage.

Line Formation Task: In this task, the robots start in a
clump and must form a line. This is done using a virtual–
forces algorithm. Each robot measures the range and bearing
to each of its neighbors, calculates a virtual force as if
there were a spring between itself and the neighbor, sums
the forces from all robots in its communication range, and
moves in that direction. Robots which are close together
will be forced apart, and robots too far apart will be pulled
together. One robot does not move regardless of the virtual
forces acting on it, thus acting as an anchor. Each robot also
feels an additional small force which is always directed in
the same global direction (arbitrarily called “north”). This
could be achieved by placing a compass or sun sensor on
the robots. E-Pucks do not have compasses, so in our tests
it was achieved by placing a stationary robot at the edge of
the field, transmitting a special message at full power, acting
as the “north star”. All robots placed an additional force on
themselves pointing toward the north star robot.

After some amount of time, a line of robots is formed
(example shown in Figure 2c), reaching from the anchor
robot and stretching to the north. We are interested in how
often this virtual–forces method succeeds in creating a line,
and when it does, how long the line takes to form.

C. Hardware Variables

We test two types of hardware quality: bearing quantiza-
tion and motor accuracy.

Bearing Quantization: The robots receive signals from
other robots and can measure the range and bearing to
each transmitter. This bearing measurement would likely be
achieved by placing a ring of receivers around the robot.
One could interpolate between the received intensities at each
receiver to calculate a continuous bearing to the receiver. Our
epucks calculate a continuous bearing measurement in this
manner (with 12 sensors arranged around the robot). This
requires high quality receivers and significant computation
to do the interpolation. If there were only eight sensors,
bearing would be obtained by simply knowing which sensor
received the signal, and would only be known to an accuracy
of 45◦. In other words, there would only be eight quantized
possibilities for the bearing measurement. This would be
a significantly simpler design, requiring fewer sensors, less
wiring, less power usage and weight, and fewer possibilities
for failure.

Fig. 3. With continuous bearing measurement, the receiver can calculate
the bearing to the transmitter (to within the error of the sensors). With
quantization of 4, for example, the receiver only knows which quadrant the
transmitter is in.

Fig. 4. In simulation, a single robot is commanded to move in a 2m–
diameter circle ten times, with varying amounts of movement error. With
±20% error, there is still approximate looping behavior, and with ±100%
error, it looks like completely random movement.

We test four possibilities for this bearing quantization:
none (continuous bearing measurement), eight sensors, four
sensors, and two sensors. With only two sensors, the robot
only knows if the transmitter is in front of or behind it. These
possibilities for bearing quantization are diagrammed in
Figure 3. To achieve this on the actual robots, we artificially
degrade the sensors in software.

Motor Accuracy: We assume that control of motion is
implemented by velocity control of two motors. Uniformly
distributed noise is artificially added to the commanded
velocity to measure the effect of motor quality. We test four
amounts of noise: ±0%, ±5%, ±20%, and ±100%. With
±100% noise, each wheel could rotate at a speed anywhere
between 0 and twice the commanded rate. Because the noise
on each wheel is independent, when a robot intends to go
straight, it could actually veer off course.

An illustration is provided in Figure 4. As a simple
example, a robot in simulation is commanded to walk ten
times around a circle whose diameter is 25 times the robot
diameter. This is repeated with various amounts of motor
error. With ±1%, the circles drift slowly, and with ±100%,
it resembles random walk.

Building robots with small movement error is difficult be-
cause it requires accurate actuators, feedback sensors (which
require mass, power, and computation), or tight tolerances
on construction (precise wheel diameter, leg length, power
regulation). An algorithm which can perform well on robots
with poor locomotion will be more useful because the robots
will be easier to build, less costly, and simpler.

Error of ±0% is possible to achieve in the simulator, but
the physical robots will, of course, have some minimum
noise. Informal measurements indicate that this error is less
than 1% for the motors on the E-Pucks. Strictly, movement
error is added to the error already present in the system,
which for the simulator is 0% to within the accuracy of a
Java® double, and for the robots is less than 1%.



Fig. 5. Trail following performance. Simulation data points represent the average of 100 runs, physical robot data points represent the average of 5 runs,
and error bars show one standard deviation. On the horizontal axes, hardware performance increases to the right. Bearing quantization must decrease to 2
until an appreciable decrease in performance is observed. Similarly, movement error must reach ±100% before performance decreases.

III. TESTS AND RESULTS

We measure the effect that bearing quantization and motor
accuracy have on the metrics described above: number of
complete path traversals, amount of area coverage, speed
of coverage, line formation success rate, and speed of line
formation. Each test is done both in simulation and on
physical robots. The data is shown in Figures 5, 6, and 7.

Robot size, movement speed, communication radius, and
obstacle sensing range are all matched between simulation
and hardware. Dropped communications do occur in the
real robots but are not modeled in the simulator, sometimes
causing a small difference between the robot performance
and the simulator performance.

A. Trail Following Experiment

1) Number of Complete Path Traversals: With no bearing
quantization, the robots make between 3 and 4 traversals in
10 minutes (Figure 5a). With only eight or even four sensing
regions, the performance does not substantially fall. There is
a substantial drop with only two sensors.

Movement error shows a similar trend. ±5% or even
±20% show no substantial drop in performance from ±0%.
Only with ±100% error does the performance fall. For both
bearing quantization and movement error, the simulation and
physical robots have comparable performance.

B. Expansion Experiments

1) Total Area Coverage: Neither bearing quantization nor
movement error have an effect on area coverage, as seen in
Figures 6a and 6b. This makes sense because the bearing to
a transmitter has no effect on robot movement during this
procedure; the only quantity that matters is the number of
other robots in the sensing range. The robots simply move
randomly when they can hear more than three other robots
and stand still otherwise, regardless of where those other
robots are. It also makes sense that the movement error has
no effect because this metric measures the area covered when
the expansion is finished, regardless of how long it took.
So, with ±100% error, one might expect that coverage takes
longer, but it still covers the same area in the end.

In the bearing quantization data, the amount of area
covered by the physical robots is noticeably worse than in

simulation. This is likely because of intermittent commu-
nications failures. In reality, the edge of the communication
radius is not sharply defined. Sometimes communications are
just lost, and sometimes they travel farther than normal. This
can cause robots to wander too far away and get lost, and
therefore not be counted.

2) Time Until Coverage: As expected, with ±100% error
the swarm does take longer to reach its final coverage than
with ±0% (Figure 6d). ±5% or ±20% show mostly non-
degraded performance. Bearing quantization has no effect
(Figure 6c), which makes sense for the same reason as above
— the location of the receptions is not used in the expansion
algorithm. The same effects of communications failures can
also be seen here, with the results from the robots being
consistently worse than the results from the simulation.

C. Line Formation Experiments

1) Line Formation Success Rate: In simulation, the robot
swarm is almost always able to form the line, as seen in
Figures 7a and 7b. With physical robots, however, failures are
more common. Because of dropped communications, some
of the virtual forces can be temporarily lost causing robots
to move in the wrong directions, or even get completely lost.
With only two reception directions (Figure 7a), the situation
is even worse. In this case, the robots often fail, partly
because of communications failures, but partly because they
don’t have enough information on which to calculate their
movements. The virtual force always points directly ahead or
backward. If the force points backward, the robot will turn
until it is directly ahead (not necessarily a full 180◦ turn) and
move. With so little information, the communication failures
overwhelm them.

2) Line Formation Time: The time required for the swarm
to form a line (when it does so successfully) is roughly the
same with no bearing quantization as with a quantization
level of eight or four. When only two sensors are present
(bearing quantization of two) it takes twice as long or more,
as seen in Figure 7c. Surprisingly, the amount of movement
error seems to have no significant effect. Even with ±100%
error, it takes approximately as long as with no error. During
the process of forming the line, the robots ‘jostle’ around as
they are moved by the virtual forces. Most of their movement



Fig. 6. Expansion performance. Simulation data points represent the average of 100 runs, physical robot data points represent the average of 5 runs, and
error bars show one standard deviation. On the horizontal axes, hardware performance increases to the right. Bearing quantization has no effect on the
total area covered nor the time it takes to reach coverage. Movement error does not affect total area coverage either, and must reach ±100% before it
degrades the time until complete coverage.

appears to be this jostle, and over time they drift to the correct
final positions. Apparently, adding even ±100% error just
adds to the jostle, but the robots are still able to reach the
final positions in roughly the same time.

IV. CONCLUSION

This paper explored the relationship between hardware
quality and swarm algorithm performance. Specifically, we
varied movement accuracy and bearing measurement quanti-
zation, and measured the effect on trail following, expansion,
and line formation performance. Minimal hardware is de-
sirable when constructing a swarm of robots, because high
quality hardware is expensive and could reduce reliability.
One goal of this work is to answer the hypothetical question
from an engineer building a robot swarm: “how good do
the robots need to be?”. The data provide a partial answer.
For the trail following task, it appears that a communication
system which can only distinguish four reception directions
and movement with ±20% error is good enough, meaning
that it will achieve performance comparable to a robot
with continuous bearing resolution. ±20% seems to also be
sufficient for the expansion task. For the line formation task,
quantization of four offers similar performance to continuous
resolution, and even ±100% movement error is fine.

Overall, robotic hardware offering ±20% movement error
and bearing quantization of four yield mostly undegraded
performance, suggesting those are good design points for
swarm robots. Slight gains may be achieved moving from
±20% to ±0%, or from quantization of four to continuous
resolution, but these are only worth paying for if the cost of

those higher–quality sensors and actuators is commensurate
with the small gain.

These relationships are important to understand as we
move toward swarms of smaller and more constrained robots.
Eventually, we aim to implement swarm algorithms on very
small robots [1] on which sensor and actuator precision is
very expensive.

In the future, we will expand this work to test other primi-
tives [3], [11], and to test whether combinations of primitives
show the same hardware degradation relationships. If so, then
the data could be used to assess the implications for whole
algorithms. Additionally, although bearing quantization and
movement error are two important hardware variables, others
could be more relevant to some particular robots, so a broader
range of hardware variables would be useful.

This work was funded by the National Science Founda-
tion under grant #IIS-0811571. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

APPENDIX A. TASK PSEUDOCODE

The trail following, expansion, and shape formation tasks
all have straightforward implementations. For clarity, pseu-
docode for each is shown in Figure 8.
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