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Abstract— Flapping-wing robots typically include numerous
nonlinear elements, such as nonlinear geometric and aerody-
namic components. For an insect-sized flapping-wing micro air
vehicle (FWMAYV), we show that a linearized model is sufficient
to predict system behavior with reasonable accuracy over a
large operating range, not just locally around the linearization
state. The theoretical model is verified against an identified
model from a prototype robotic fly and implications for vehicle
design are discussed.

I. INTRODUCTION

Research in the areas of insect flight and biologically-
inspired flapping-wing micro air vehicles (FWMAVs) has
expanded significantly in the last decade, motivated by the
need for small-scale, agile aircraft that can maneuver in
confined or dangerous spaces. Dynamic modeling of such
FWMAV5s typically includes several nonlinear elements, such
as mechanism kinematics of linkages that are used to connect
motors or other actuators to flapping wings [1], nonlinear
aerodynamic forces [2], or nonlinear actuator effects such as
saturation and hysteresis [3]. Wings typically flap through
large angular ranges while also undergoing large changes in
angle of attack, so some standard methods for linearizing
dynamic models may not be appropriate. For example, the
small angle assumption (sin 6 = #) is usually only considered
valid over a range of +15°, whereas wings may flap through
a stroke amplitude as great as 120° in some FWMAVs
[4] and approach 180° in some insects [5]. Lift and drag
coefficients from a quasi-steady aerodynamic model typically
used to predict aerodynamic forces on flapping wings [6]
are functions of angle of attack and thus can vary greatly
throughout a single stroke as the angle of attack changes [7].
As a result, complete dynamic models of FWMAYV systems
are usually highly nonlinear and time varying.

Numerous studies have investigated nonlinear modeling
of FWMAVs, frequently with attention to design and opti-
mization of elastic elements which allow a flapping system
to be driven at resonance, thus reducing or eliminating the
inertial cost associated with accelerating and decelerating
the wing [8], [9], [10], [11], [12]. However, such studies
typically focus on the addition of a spring element to an
existing MAV system, without consideration for redesigning
actuators, linkages or wings. Other studies, such as [13], have
taken a more integrated approach to vehicle design, including
wing, actuator and transmission elements, accounting for full
nonlinear dynamics. Each component can have an important
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Fig. 1. A recent prototype of the Harvard Microrobotic Fly, an
insect-sized flapping-wing micro air vehicle.

effect on overall system dynamics and thus vehicle perfor-
mance - for example, changing the wing shape will affect
both its inertial properties and aerodynamic damping forces,
whereas changing a linkage system or gearbox will affect
how torques map from the motor frame of reference to the
wing.

Here, we seek to show that a linear model can serve as
a simple, useful design tool to predict resonant behavior of
a system driven by a harmonic actuator, and examine the
validity of a linearized model in the presence of various
nonlinearities mentioned above. Such a model should ac-
curately account for changes to system parameters such as
wing shape, actuator size and transmission geometry in order
to examine their effects on resonant behavior. Accurately
predicting resonant behavior will allow the design of a
system with maximum power transfer from actuators to the
load (in this case, the air) or an optimal lift/weight ratio.

An alternative approach to developing a physics-based,
ground-up nonlinear model and then linearizing it is to use
system identification. Here, a linear model can be derived
by experimentally measuring a system’s response to chosen
inputs and estimated disturbances. This is commonly used,
for example, to characterize the dynamics of hovering rotary-
wing MAVs moving in three-dimensional space, due to the
difficulty of calculating parameters such as body inertia and
drag terms for a vehicle with complex shape [14]. We define
such a problem as modeling the “external” dynamics of the
system. The MAV itself is treated as a black box, and system
inputs are mapped to motions in three dimensional space;
interior interactions of power supplies, actuators, linkages
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Fig. 2. View of a wing chord section during flapping. As the wing
flaps (¢), it rotates passively about a spanwise axis (). Thus lift
is generated on both the upstroke and downstroke.

and airfoils are not modeled separately. Such experiments
are useful for designing a flight controllers for a predeter-
mined vehicle design. However, for the purposes of vehicle
design itself, we must characterize the “internal” dynamics
- for example, the relationship between an electrical control
signal and actuator motion, or wing movement and resulting
aerodynamic forces.

The Harvard Microrobotic Fly (HMF) is an approximately
60mg, 3cm-wingspan FWMAV inspired by Dipteran insects
(Fig. 1). It consists of four main components, each analo-
gous to a biological counterpart: the airframe (exoskeleton),
actuator (flight muscles), transmission (thorax), and airfoils
(wings). The actuator, a piezoelectric cantilever beam, pro-
vides an oscillatory mechanical input to a symmetric fourbar
transmission, which converts linear motion of the tip of the
actuator to flapping motion of the wings. Each wing rests
on a hinge that acts as a torsional spring, allowing the wing
to rotate passively due to aerodynamic and inertial forces
as it is flapped. Thus the wing can generate lift on both
the upstroke and the downstroke (Fig. 2). Using a simple
lumped parameter model, [1] predicted an undamped natural
frequency of 170 Hz, with measured resonance of 110 Hz
in the experimental prototype. In this paper, we seek to
improve on this analysis and present a linearized model that
can accurately predict the frequency domain response of an
actuator-transmission-wing system and compare this theoret-
ical model to a linear model derived from experimental data
using system identification.

The rest of the paper is organized as follows. In Section
IT the experimental setup and development of the identi-
fied model are described briefly. Section III presents the
development of a linearized dynamic model. Section IV
compares the frequency-domain responses of the identified
and theoretical models using Bode diagrams. Section V
discusses implications of the results on vehicle design and
usefulness of the theoretical model as a design tool, par-
ticularly how physical parameters of the system affect the
resonant response. Further considerations and future work
are discussed in Section VI.

II. EXPERIMENTS

We use the experimental setup in Fig. 3, which is a
modified version of the one in [2], a single wing version
of robotic flapper presented in [1] designed for aerodynamic
testing. This setup allows simultaneous measurement of the
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Fig. 3. Diagram of the experimental setup for measuring lift forces
and displacement of the actuator tip. The wing-driver is attached
to an Invar double cantilever beam, whose deflection is measured
by a capacitive displacement sensor. This deflection is proportional
to the lift force. The displacement of the actuator tip is measured
using a CCD laser displacement sensor.

displacement of the tip of the piezoelectric actuator as well
as measurement of the instantaneous lift force (which is
not purely aerodynamic since it will include an inertial
component due to wing rotation). As shown in Fig. 3,
the wing driver mechanism is mounted on the end of a
double-cantilever beam, whose deflection is measured with
a capacitive displacement sensor (CDS). For small beam
deflections, there is a linear relationship between deflection
and lift force. Further details on the design, fabrication and
calibration of the CDS-based force sensor are given in [2]
and [15]. The other variable measured is the displacement
of the actuator tip. As shown in Fig. 3, this is done using a
noncontact charge-coupled device (CCD) laser displacement
sensor (Keyence LK-031), which is located close to the
actuator tip. The sensor laser reflection on the actuator is
depicted as a circular spot in Fig. 3.

A discrete-time state-space representation of the system is
found using a subspace algorithm as in [16]. The input to
the system is an electrical signal from a D/A board which
is amplified through a high-voltage amplifier and sent to the
actuator, and the output is an analog voltage from the CCD
sensor used to measure deflection of the actuator tip, which
is then sampled and recorded with an A/D board. We refer
to the actual continuous-time system as P and the discrete-
time identified model as P;. A block diagram of this system
is shown in Fig. 4. Fig. 5 shows Bode plots of the identified
48th-order linear model and a reduced 4th-order model. The
magnitude response has been normalized to have 0 dB gain at
DC. Note that P; has two prominent resonant peaks, around
127 Hz and 750 Hz respectively. Understanding the 120 Hz
peak is of particular interest since this falls within the typical
range of operation of the robot.

The higher-frequency dynamics may arise due to a variety
of causes, such as higher-order dynamic components within
the system, such as vibration of the wing itself or an un-
known aerodynamic effect; or vibration of components that
are considered mechanical ground, and thus perfectly rigid,
in the model, such as the airframe or lift sensor (note that the
lift sensor itself has a resonant frequency of approximately
1kHz). At this point, any discussion of the root causes of
these higher order dynamics is purely speculative, and thus
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Fig. 4. A block diagram of the experimental system. The actual open-loop
plant P is driven by input voltage signal to the actuator w(t). The measured
output y(t) is the displacement of the actuator tip, which will include effects
from all aggregated output disturbances v(t) acting on the system (such as
aerodynamic forces).
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Fig. 5. Bode plot of the identified discrete-time model Pr of the
system depicted in Fig. 4. The input to the system is the voltage
sent through an amplifier to the actuator, and measured output
is the voltage of the CCD sensor which corresponds to actuator
displacement.

not investigated further in this paper. Regardless of their
source, feedback control of the piezoelectric actuator position
can be used to cancel out undesired vibrational modes [16].

III. DEVELOPMENT OF LINEAR MODEL

The identified model P; gives us an empirical reference
with which we can evaluate the quality of a linear, lumped-
parameter model. There are three primary mechanical com-
ponents of interest in formulating the dynamic model: the
actuator, transmission, and wings. The three components
are connected and each has associated nonlinear geometric,
inertial, damping or elastic behavior (Fig. 6). Since the
system only has one mechanical degree of freedom, it can
be simplified to the one illustrated in Fig. 7. We assume the
fourth component, the airframe, acts as a rigid mechanical
ground and thus has no relevant dynamic properties. Here,
we treat the linearization of each component individually,
then synthesize these components to develop the full linear
model.

A. Actuator

Piezoelectric actuators can be subject to numerous nonlin-
ear effects, including creep, saturation, hysteresis, and elec-
tric field-dependent stiffness (and thus resonant frequency).
See [3] for a detailed analysis of these effects. For modeling
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Fig. 6. A lumped-parameter representation of the dynamic system
to be modeled. The subscripts a, ¢ and w stand for actuator,
transmission and wing respectively. The system consists of an
actuator connected to the wings by a mechanical transmission. Each
component has its own geometric, inertial, damping and elastic
terms, many of which are nonlinear but can be approximated by
linear models. The transmission itself can have dynamic properties,
which are mapped back to the actuator frame x via the transmission
ratio 7'. It is important to note that x and ¢ are kinematically related
through the transmission T, so the system pictured only has one
degree of freedom, and therefore can be reduced to the equivalent
diagram shown in Fig. 7.
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Fig. 7. The elements in Fig. 6 can be lumped into equivalent
stiffness, damping and inertial parameters (still nonlinear) in a
single coordinate frame, either = or ¢.

purposes, a piezoelectric actuator can be treated as a two-
port element that transduces voltage and current to force and
velocity. See [17] for more details on dynamic modeling of
the actuator.

Three key assumptions allow treatment of the actuator as a
linear element. First, the actuator is driven by an ideal voltage
source, therefore a voltage-driven piezoelectric actuator is
equivalent to a force source in the mechanical domain.
Second, the resonant frequency of the actuator (~1000 Hz)
is much higher than the typical operating frequencies of
interest for the FWMAV in question (~100 Hz), thus we
can assume quasi-static operation of the actuator. This is
expected based on several previous studies of piezoelec-
tric actuators which have recorded the frequency-domain
magnitude response of the actuator tip displacement for
clamped-free boundary conditions [18], [19]. We measure
the force response of an actuator to a voltage input, including
phase information, under clamped-clamped and clamped-
pin/roller boundary conditions; this is due to the difficulty
of measuring force under clamped-free boundary conditions,
which requires construction of a dynamometer as in [20]. The
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Fig. 8. A side view of the experimental setup used to measure

actuator voltage-force response. Force output of the actuator is mea-
sured under clamped-clamped and clamped-pin/roller conditions
using a six-axis force/torque sensor (ATI Nano 17). The latter case
allows measurement of pure vertical force at the tip, while clamped-
clamped conditions measure both horizontal and vertical forces and
a moment. The clamped-pin/roller condition better approximates the
operating conditions when the actuator is attached to a transmission-
wing system.

resonant frequency of a beam, if measured under one set of
boundary conditions, can be adjusted for different boundary
conditions via a scaling factor (see [21], p 3-73), thus we
can approximate the resonant frequency of a clamped-free
actuator using these tests.

A diagram of the experimental setup is shown in Fig. 8.
Force data is recorded with a six-axis force/torque sensor
(ATI Nano 17), and a linear model is derived using the same
system identification techniques used to create a model of the
robotic wing flapper (Fig. 9). The identified model shows
that, at low frequencies, the force output has a flat-band
response (i.e. constant gain and zero phase difference) for
both sets of boundary conditions, suggesting that that force
is simply proportional to voltage at low frequencies. The
dynamics at higher frequencies may arise due to resonance of
the clamping mechanism used to hold the actuator in place,
sensor noise, or other factors; but for a worst-case scenario,
we can assume an actuator resonance of just over 1 kHz.
Based on the scaling factors in [21], a clamped-hinged beam
will be four times stiffer than a clamped-free beam, thus we
would still expect a minimum actuator resonance of 250 Hz,
outside the range of interest for our MAV. In practice, the
resonant frequency of the actuators is expected to be much
higher.

Lastly, the frequency and field-dependent, thus nonlinear,
actuator damping is not a significant source of loss [22],
therefore can be neglected relative to the aerodynamic damp-
ing. From the static analysis of the actuators in question in
[19], we expect the force exerted by an actuator to simply
be proportional to the applied voltage. Thus for sinusoidal
voltage excitation, the force applied by the actuator to the
mechanical system is simply

F, = Fy,sin(27 ft) (D

where [} is the maximum (blocked) force of the actuator,
a function of actuator geometry, material properties and
applied voltage as calculated in [19], and f is the drive
frequency. Neglecting nonlinear softening effects, the elastic
deformation of the actuator acts as a linear mechanical
spring with spring constant k,, also available based on the
derivation in [19]. As mentioned above, we neglect the
actuator damping term b, in Fig. 6.
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Fig. 9. The identified model of a cantilever piezoelectric actuator
shows that in the frequency range of interest for the FWMAY, the
force output of the actuator is flat and in phase with the voltage
input. This suggests that it is reasonable to treat the force as simply
proportional to the applied voltage. High-frequency dynamics are
ignored as they may arise from resonance of the clamp, sensor noise
or other sources that are mistaken by the system identification model
as dynamic behavior, and the frequency range over 1 kHz is not of
interest for the FWMAV in question.

B. Transmission

The transmission consists of two symmetric slider-crank
fourbar mechanisms (or, for the single-wing driver used
in these experiments, only a single fourbar). Their input
links are rigidly connected so the entire transmission is
only 1DOF. Half of the transmission is shown in Fig. 10.
The transmission physically consists of stiff carbon fiber
links connected by flexible polymer joints - a pseudo-rigid
body assumption models the carbon fiber links as rigid and
the flexures as ideal revolute joints with torsional springs
[23]. This allows kinematic analysis of the transmission to
map actuator input x to wing flapping angle ¢ using the
dimensions defined in Fig. 10. ¢(x) is given by

(Ly — l’)2 + Cl )

¢ =cos ! <
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where

Ly=1Ly+Ly— Ly 3)
Cr=L3+ (Ly—Ly)*> - L3+ L2 4)

Co =24/ L2 + (Ly — Ly)2. (5)

For small displacements, (2) can be simplified greatly, and
the transmission simply acts as a lever, i.e.,

¢=Tx (6)

where T = 1/Lj3. For the single-wing flapping device
used in these experiments, the transmission dimensions are
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Fig. 10.  One-half of the fourbar transmission is pictured. The
transmission kinematically relates actuator displacement x to wing
flapping angle ¢. Flexure joints (inset) act as revolute joints with
attached torsional springs.
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Fig. 11. The nonlinear and linear transmission kinematics plotted
over actuator position ranging across 250 pm. The linearization is
quite accurate for wing motions up to +20° and begins to deviate
from the nonlinear kinematics as wing angles approach +60°.
Transmission geometry can be optimized to improve the linearity
of the response.

Li = 300um, Ly = 500um, L3 = 300pum, and L4 =
630um. The nonlinear and linearized kinematics for this
geometry are plotted in Fig. 11. As expected, the small angle
assumption is valid in the range of roughly £20°, however
the actual stroke angle begins to deviate from the linearized
angle for larger actuator displacements. It is possible to
optimize transmission linearity numerically by defining a
cost function such as the square of the difference between the
derivative d¢/dx and the ideal linear transmission ratio 7',
and minimizing this function using the “fmincon” algorithm
in Matlab. The kinematics for an optimal geometry with link
lengths Ly = 312pum, Ly = 400pum, Lz = 291pm, and
Ly = 498um are shown in Fig. 11 as well.

The elastic deformation of the flexures stores potential
energy and thus must be included in a dynamic model.
While this element will be nonlinear due to the nonlinear
kinematics, linearization of the kinematics means the flexures
can be treated as torsional springs with spring constant
ky. Damping and inertia of the transmission flexures and
linkages are neglected, as these values are quite small relative
to the aerodynamic damping and inertia of the wings [24].

Fig. 12. The global xyz coordinate system is fixed to the vehicle
airframe. The wing flaps about the ¢ axis, which remains parallel
with the global z axis. The ¥ and 6 axes rotate with the leading
edge of the wing. In addition to flapping about the ¢ axis, the wing
also rotates about the v axis. Deviations from a flat stroke plane
(0) are not addressed here.

C. Wings

1) Inertia: As discussed earlier, the wing flaps about
one axis while rotating about its longitudinal axis (see Fig.
12). Coupling between these degrees of freedom leads to
nonlinear terms in the equations of motion (for brevity
the derivation is not reproduced here, see [2] for details).
Analysis can be greatly simplified if the wing is treated as
a rod rotating about a single axis ¢, and the second axis of
rotation 1 is ignored. This may be a reasonable assumption
for a wing with a high enough aspect ratio (length/chord).
To verify, we calculate the maximum Kkinetic energy of each
rotational mode for typical wing kinematics: flapping at 100
Hz with a stroke amplitude of 120° ,and the angle of attack
changing from 45° to 90° in one half of the half-stroke
(i.e. one-quarter of a complete flapping cycle). This gives
maximum angular velocities of ¢ = 418 rad/sec and 1) = 314
rad/sec. The moments of inertia about the wing base are
J3=45.3x10"12 kgxm? and J,=1.7x10"'? kgxm?. This
gives maximum kinetic energies of

1 .
Ky = 5J60mas = 3.9617 9

1 .
Kw = §J¢w72nax = 0084#‘] ®)

Taking the ratio of these two terms gives

Ky

Ky
so we see that the vast majority of kinetic energy due to
wing movement is stored in the flapping mode. Thus we can
make the simplifying assumption that the inertial behavior of
the wing is modeled by a beam with moment of inertia Jy
rotating about the ¢ axis (including inertia from the “added-
mass” effect due to acceleration of the air, see [2]), and this
behavior is linear.

2) Aerodynamics: The instantaneous aerodynamic force
acting on the wing is typically broken into two components:
lift and drag (F7, and Fp). We assume the aerodynamic
energy terms are dominated by drag - i.e., the drag directly
opposes motion of the actuator and thus dissipates energy;
whereas we neglect the energy required to create a downward
momentum jet of air during hover, and assume the lift force

~ 47 )
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Fig. 13. Nonlinear and linearized aerodynamic drag forces over

one flapping period for typical flapping kinematics, calculated using
(10) and (11). Note that by convention, drag force is always defined
to be positive.

does no work against gravity if the altitude of the vehicle
does not change. The drag force is a function of flapping
angular velocity ¢,

Fo = £pBCp(0)? (10)
where p is the ambient air density, Cp(«) is an angle-of-
attack-dependent drag coefficient (determined experimentally
in [7]) and $ is a coefficient that depends on wing geometry
(see [2] for details). The drag force acts at the wing center
of pressure, a distance 7., from the base of the wing. For a
linear model, we desire a linear damper of the form Fp = qu
where b is the damping coefficient. The drag force can be
linearized about an operating point [¢g, ], such that

Fp = pBCp(ag)do Ad. (11)

Therefore b is given by

b = pBCD(ao)qbo.

Fig. 13 compares the nonlinear and linearized drag forces
calculated using (10) and (11) over a full flapping cycle
for typical flapping kinematics (flapping with 120° stroke
amplitude at 100 Hz with an angle of attack of 45° and 90°
at mid-stroke and the ends of the stroke respectively). We
choose the point of maximum drag (which occurs at mid-
stroke with o = 45°) for linearization, thus the linearized
drag force always overestimates the actual drag force, giving
a “worst case” estimate for aerodynamic behavior.

(12)

D. Complete model

Combining the linearized elements presented above yields
the model pictured in Fig. 14, which is equivalent to that in
Fig. 7. The equation of motion for this system is simply the
classical result for a second-order spring-mass-damper,

Mg + begi: + kg = F (13)

F

a

N

*LT%H —
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Fig. 14. A diagram of the linear dynamic model.

TABLE I
PHYSICAL PARAMETERS

Parameter Symbol Value Units
Actuator mass Ma 20 mg
Wing inertia Jo 45.3 mg-mm?
Transmission ratio T 2,857 rad/m
Radius to center of pressure Tep 10.1 mm
Aerodynamic damping b 2.91 uN-s/m
Actuator stiffness ka 300 N/m
Transmission stiffness k¢ 5.4872 | pN-m/rad
Equivalent mass Megq 390 mg
Equivalent damping beq 0.2613 N-s/m
Equivalent spring constant keq 344.8 N/m

where, mapping all relevant terms to the x coordinate,

Meg = Mq +T?J (14)
beq = T?repb (15)
keg = ko + T?k;. (16)

Values for these parameters are given in Table I. The transfer
function relating actuator displacement to force is then
X 1

i 17
F' megs? 4 begs + keq an

and we compare the Bode plot for this transfer function
to the identified model P; in the following section. For
convenience, we refer to the theoretical model as Pr.

IV. COMPARISON

The theoretical linear model Pr from (17) is compared
to the identified model P; in Fig. 15. We see reasonable
agreement between the magnitude responses of Pr and P,
with resonant frequencies of 133 Hz and 127 Hz respectively.
This gives an error of approximately 5%, a significant
improvement over the roughly 50% error in [1] (170Hz
predicted vs. 110Hz actual). It is well known that while
there is a one-to-one mapping of poles from a continuous
time system to a discrete time system, the zeros obtained
from discretely sampling a continuous-time system can be
complicated functions of the sampling frequency [25], and
this can affect the phase response. Thus, it is not cause for
concern that the phase responses of the two systems do not
match well. However, we note that the magnitude response of
Pr depends heavily on the state [¢g, ] used for linearization
of the aerodynamic damping. The terms m., and k., are
dependent on intrinsic geometric and material system prop-
erties, and are not explicitly dependent on linearization about
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Fig. 15. Bode plots for the theoretical and identified models Pr
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Fig. 16. Taking kinematic data from [2] allows selection of different
states for linearization of the aerodynamic damping. Selecting an
angle of attack o = 30° results in an underdamped model, while
a = 60° gives an overdamped model. The good fit in Fig 15
resulted from o = 45°, and all three models use a flapping velocity
of ¢ = 392rad/sec.

a state (unless the transmission ratio, 7, is taken about a non-
equilibrium position for the transmission, but we neglect this
possibility). Choice of a different [¢g, cvg] for (11) can result
in either over or under-damping of the theoretical model (Fig.
16).

V. IMPLICATIONS FOR VEHICLE DESIGN

The original design of the Harvard Microrobotic Fly [1]
presented the undamped natural frequency of the system as

by

Megq

(18)

Wnp =

and there it is correctly stated that wing flapping iner-
tia should be minimized in order to maximize resonant
frequency. However, transmission optimization was purely
kinematic, i.e. T was maximized (based on limitations of
the fabrication process which placed a lower bound on L3)
in order to maximize stroke amplitude for a given actuator
displacement. Since a voltage-driven piezoelectric actuator
acts as a force source, not a displacement source, this
approach is not entirely realistic, as it does not take into
account the effects of the transmission ratio on dynamic
behavior. Here, we present the damped resonant frequency

wg =wpy/1—¢?

in expanded form so the dependence on 7' can be seen:

N Mg + T‘2 J 1) 1 bgq
YN Tk, ¥ T2, 4 (ma + T2Jy) (ka + T2k;)"

(20
This equation is plotted in Fig. 17 as a function of L3
(remember that T = 1/L3), and it is clear that, for the
frequency range of interest, resonant frequency increases
with increasing Ls (for very large Lj, the system reso-
nant frequency will asymptotically approach the resonant
frequency of the unloaded actuator). Thus, the claim in [1]
that transmission ratio should be maximized conflicts with
the desire to increase resonant frequency. This result does
not simply imply that transmission ratio should instead be
minimized to maximize resonant frequency, as this would
result in very small stroke amplitudes - e.g., a vehicle
flapping at 1 kHz with only 5° of wing motion will likely
generate negligible lift. Ultimately we seek to maximize the
lift-to-weight ratio for a given vehicle, or maximize the lift
force for a vehicle of fixed mass. For a linear model, as with
the drag force, the lift force will be proportional to wing
velocity. Thus we define a characteristic wing velocity as
the product of resonant frequency and the stroke amplitude:

d.)char = |¢|wd

We use the DC stroke amplitude for this calculation, since,
as discussed above, the magnitude at resonance is heavily
dependent on the accuracy of the linearized damping term.
The result, shown in Fig. 18, indicates that there is an
optimal value for L3 that gives maximum lift. Decreasing L3
indefinitely will result in a decrease both resonant frequency
and resulting lift force - an important result not considered
in the original vehicle design.

Note that this analysis hinges on the assumption that
the passive dynamics of wing rotation, which play a vital
role in lift generation (see [2] for details), will remain
sufficient to generate lift. In reality, these dynamics are
also frequency-dependent, i.e. at very low frequencies, not
enough aerodynamic force will be generated to cause the
wing to rotate, so the angle of attack will remain near
a = 90° and little lift will be generated. Alternatively, at
very high frequencies, high aerodynamic and inertial forces
will cause the wing to “over-rotate” (i.e. o approaches 0°),
and again, very little lift will be generated. Thus these results
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Fig. 17. Plot of (20), showing that resonant frequency increases
with increasing L3 for the linearized model Pr.
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Fig. 18.  Characteristic lift force as a function of L3z for the
linearized model Pr.

must be used with caution when extrapolated outside the
neighborhood of flapping at 100 Hz.

VI. CONCLUSIONS

We have presented a linearized second order model that
provides a reasonable fit to an identified model of a flapping-
wing MAV. The linear model proves sufficient despite the
inherently nonlinear nature of the system. The model pro-
vides insight into the design of the MAV system for flapping
at resonance, especially when considering the transmission
mechanism that maps actuator displacement to wing motion.
The model will serve as a useful design tool for vehicle
scaling, e.g., designing components for a vehicle with a
larger mass, which will likely have larger wings and actuators
and thus a lower resonant frequency. Designing FWMAVSs to
flap at resonance is an essential part of maximizing power
efficiency for systems with limited payload and lift/weight
ratio.
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