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Abstract— Large collections of robots have the potential to
perform tasks collectively using distributed control algorithms.
These algorithms require communication between robots to
allow the robots to coordinate their behavior and act as a
collective. In this paper we describe two algorithms which
allow coordination between robots, but do not require chem-
ical pheromones or physical environment marking. Instead,
these algorithms rely on simple, local, low-bandwidth, direct
communication between robots. We describe the algorithms
and measure their performance in worlds with and without
obstacles.

I. INTRODUCTION

As the cost of robotic hardware has come down and
availability has gone up, there has been growing interest
in robotic systems which are composed of multiple simple
robots rather than one highly-capable robot. This tradeoff
reduces the design and hardware complexity of the robots
and removes single point failures, but adds complexity in
algorithm design. The challenge is to program a swarm of
simple robots, with minimal communication and individual
capability, to perform a useful task as a collective.

Nature has solved this problem many times over. Schools
of fish swim in unison, and are able to execute large scale
collective maneuvers to avoid a predator. Termite colonies
build large and very complex nests (complete with thermal
regulation). Ants collectively search a very large area and
are capable of returning food to the nest. In each of these
examples, there was no central leader with all the information
making decisions for each individual. Leaderlessness is a
central aspect of distributed swarm algorithms.

In this work, we take inspiration from natural swarm
behaviors to build algorithms for robot swarms. Ant colony
foraging is our primary example. Ants use pheromones
to mark trails in the environment, which allows them to
efficiently communicate the location of food sources and
collectively bring food back to the nest [1]. This work
focuses on finding a way for simple robots with simple
sensing capabilities to achieve the same task, without having
to implement physical pheromones or physical environment
marking.

In our application, we assume there is a swarm of robots
which has simple sensing capability: each robot can com-
municate directionally with other robots within a short-range.
The task is for the group of robots to search the environment
for an object of interest (“food”) and then return the food
to the base (“nest”). The robots do not know the location of
the food apriori, nor do they have GPS/odometry capabilities,
but the efficiency of the group can dramatically be improved

through coordination. We present two algorithms, inspired by
ant colony behavior, that use a simple concept: each robot
can dynamically take on one of two roles, being a stationary
environment beacon (like a pheromone) or being a wandering
robot. The two algorithms (termed “virtual pheromone” and
“cardinality”) differ in when the beacon role is chosen and
what information the beacon emits.

We show that both algorithms are able to effectively
construct paths between food and nest, and adapt to en-
vironments with static obstacles. We compare the perfor-
mance of the algorithms to the performance of robots with-
out coordination and robots with explicit global position
and knowledge of the food; these comparisons represent
two extremes in hardware complexity of the robots. We
show that the virtual pheromone and cardinality algorithms
dramatically increase efficiency over no coordination, and
performance scales directly as the number of robots increases
until congestion impacts all algorithms. Our work shows
that for the task of foraging, we can take advantage of the
collective efficiency that ant colonies achieve, while relying
on hardware implementations that are feasible in simple and
small robots.

In the future, when these algorithms can be implemented
on large collections of small robots, they will enable appli-
cations such as distributed cleanup of environmental toxins
and automated repair. For example, a swarm of small robots
could search a building for defects, then recruit other robots
to bring tools and materials to the site of the damage.

A. Related Work

Multiple researchers have studied foraging and other
pheromone-mediated coordination, and have reduced this
behavior to algorithms [2], [3], [4], [5]. Pheromone-trail
based algorithms sometimes have the ability to dynamically
improve their path [6] and can adapt to changing terrain [7].

Ant-inspired foraging has been implemented in robots by
various groups. One of the chief difficulties is in implement-
ing the pheromone itself, or some way for the robots to
interact. There have been many approaches to this problem:

o Physical marks. Robots can physically mark their trails
in a variety of ways, such as leaving alcohol [3], heat
[8], odor [9], visual marks [10], or RFID tags [11].

o Use existing communication channels. In the work of
Vaughan et al., robots maintain an internal pheromone
model with trails of waypoints, and share it with other
robots over a wireless network [12], [13], [14].

« Virtual pheromones. In [15], authors use direct infrared-
based communication between robots to transmit a kind



of virtual pheromone. They study the use of these sig-
nals to create world—embedded computation and world—
embeded displays. It is assumed that the robots that
receive the pheromone can measure the intensity of
the IR reception to estimate their distance from the
transmitter.

« Pre-deployed sensor network. The GNATS project [16]
uses robots which operate in an environment which
is pre-populated with a regular grid of beacons on
which information can be stored. They have had success
in finding close-to-optimal paths from one place in
the environment to another, even in the presence of
obstacles.

o Deployable beacons. Some groups have explored the
idea of having each robot be able to deploy beacons as
it moves through the environment. The beacons can be
movable or non-movable [17], and contain pheromone-
like information.

e Robot chains. In [18], [19], the robots form chains and
attempt to remain in close proximity with each other,
through communication or even by physically gripping
the next robot in the chain.

There are several shortcomings of these approaches which
we aim to address. Making permanent physical marks in
the environment is generally not acceptable, and temporary
or decayable marks are difficult to physically implement.
Relying on predeployed sensor networks is highly restrictive
and prevents operation in a new or unexplored environment.
Deploying beacons is a good method but requires building
robots which can carry many beacons and can also intelli-
gently recover previously laid beacons. Instead, we use the
robots themselves as beacons.

Of the work cited above, our work is most similar to the
virtual pheromone approach, except that our robots do not
have different behaviors depending on a direct measurement
of their distance from each other. This simplifies the com-
munication hardware because distance measurement is not
required. Secondly, we show that multiple algorithms can be
used with this communication model to achieve coordination
and approximate the collective benefit of pheromones.

B. Robot Model and Simulator

Robot Model: We assume a simple non—holonomic robot
that moves and turns in continuous space. Each robot has
sensors for nest, food, and obstacle detection in direct prox-
imity to the robot. Each robot can also communicate with
nearby robots using a simple IR ring architecture. The robots
have omnidirectional transmission, and directional reception.
This means that when a robot receives a transmission, it
knows roughly which direction the transmission came from
(see Fig. 1).

Simulator: In order to test the algorithms, we developed a
simulator based on Microsoft(R) Robotics Studio (MRDS).
The simulator models a continuous world in which the
robots, food, nest, and obstacles exist, and each object occu-
pies some physical extent. Realistic physics and visualization
is provided by MRDS. A snapshot from the simulator is
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Fig. 1. This figure shows the communication and sensing structure of the

robots. The figure in the upper left shows an example world setup. The
blowup details a hypothetical communication situation. When the robot on
the left transmits, the robot in the center can receive the transmission, and
also knows that the transmission came from the left-facing octant. The light
gray range in front of the central robot indicates the approximate area in
which the nest, food, and obstacle sensors are sensitive.

shown in Fig. 2. We chose this simulation environment over
a gridded world environment so that we would face the real—
world problems of collisions and congestion. Our simulator
closely matches a model of the Khperea II robots which we
plan to use in the future for hardware verification of the
algorithm.

In the remaining sections of this paper, we will describe
two ant-inspired algorithms capable of foraging without
physical pheromones, then present performance results mea-
sured in simulated worlds with and without obstacles, and
finally conclude with a discussion of future algorithm work
and application to small autonomous robots.

II. ALGORITHM DESCRIPTION

In this section, we will describe two algorithms, called the
virtual pheromone (VP) algorithm and the cardinality
algorithm.

Ant colony foraging: Both algorithms are based on the
foraging behavior of ants. Ants mark trails leading from the
nest to food and back by depositing a chemical pheromone
on the ground. Each ant can both deposit and detect this
chemical, and each ant uses the distribution of pheromone
in its immediate vicinity to decide where to move. When
an ant is carrying food, it lays pheromone as it searches
for the nest, and other ants follow this trail outbound to the
food. This distributed leaderless pheromone algorithm is the
starting point for the VP algorithm, but several important
changes have been made.

Virtual Pheromone Algorithm: The first change has to
do with the way the robots return to the nest once they
have found the food. The pheromone is laid by individuals
who are carrying food, so this trail leads to the food, but
the individual still needs a way to return to the nest. Ants
have various methods to do this, including visual landmarks
and odometry (remembering how far and in what direction
the nest is). Because of our focus on miniaturizability and
hardware simplicity, neither of these approaches is attractive
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Fig. 2. This shows a screenshot of the simulator. Window A shows a dot for each robot, with beacons shown as larger dots and cardinalities drawn to the
right of beacons. The square near the top is the nest and the square near the bottom is the food. Window B shows the actual MRDS physics simulation

and visualization.

— vision requires significant computation and memory to
interpret the image, and odometry requires high accuracy
encoders. As an alternative method to navigate back to the
nest, two distinguishable pheromones are used instead of one.
One pheromone leads to the food and a second leads to the
nest.

A second change from the biological algorithm is that vir-
tual pheromones are substituted for real ones. Real chemical
pheromones are difficult to implement in hardware because
a deposition system and a detection system must both be
built, and these systems must be simple, inexpensive, robust,
and light. Instead of implementing chemical pheromones,
simple local direct communication between robots is used
to transmit a virtual pheromone value.

During the execution of the algorithm (see pseudocode in
Fig. 4), some robots will decide to stop their normal search
behavior and become ‘pheromone robots’, also known as
beacons, which means they stop moving and act as locations
on which virtual pheromone can be stored. Walker robots can
read the pheromone level by receiving a transmission from
the pheromone robot, and they can lay virtual pheromone
by transmitting to the pheromone robot. So, if there were a
network of pheromone robots, the walker robots could use
the distribution of virtual pheromone they can sense to decide
how to move. A diagram of an example situation of the VP
algorithm is shown in Fig. 3a.

Cardinality Algorithm: The cardinality algorithm is
similar to the VP algorithm in that robots can decide to act
as either beacons or walkers — beacons transmit values, and
walkers use those values to decide where to move. The main
difference is that instead of the values that the beacons store
and transmit being real-valued floating-point numbers, they
are integers (called “cardinalities”). The first beacon standing
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Fig. 3.  This diagram shows example situations in both the VP and
cardinality algorithms. Each black dot represents a robot which has
decided to become a beacon (walkers are not shown). The numbers to
the right of each beacon indicate the virtual pheromone levels (fig a)
or cardinalities (fig b) — food pheromone/cardinality on the top and nest
pheromone/cardinality on the bottom. In fig a, the dotted lines indicate
approximately level curves in both pheromone values. In fig b, the solid line
indicates the shortest path between the nest and the food. As an example,
the dotted lines indicate paths that a robot near the i beacon on the left
could take to get either to the nest or to the food.

next to the nest transmits a 1, then the next beacon a little
further out would be able to hear the 1 and so would transmit
a 2. In general, each beacon transmits the minimum of all
the other beacons it can hear, plus one. In this way, the
cardinality of each beacon can be interpreted as the number
of beacons between that beacon and the nest. Furthermore, a
walker robot can use these cardinalities to find a path to the
nest by always moving to the lowest cardinality it can hear. In
a similar manner to the VP algorithm, each beacon actually



FOOD SEARCH:
try to pick up food
am I doing AVOID?
sense obstacle?
turn t degrees
END

start:
if beacon, goto beacon
if walker, goto walker

beacon (VP alg):
hear 3 or more beacons?

. S€
\é/;]tl[;prob p, become walker move forward

else lay inPheromone (VP only)
— END
both pheromones < threshold? .
b"thbegrl;’q‘:‘v’ﬁsk;thr“h"ld am I doing EXPLORE?
END stepCounter >n?
stepCounter = 0

else :
decay pheromones end behavior
END

END
else

try to pick up food

sense obstacle?
turn t degrees
END

o

beacon (cardinality alg):

hear 3 or more beacons?
with prob p, become walker
END clse

else move forward
both pheromones < threshold? lay inPheromone (VP only)
become walker stepCounter ++
END END

else neither AVOID nor EXPLORE:

d h
E?\]C]a)y pheromones should I explore?
set stepCounter = 0

walker (either alg): | execute EXPLORE
else

hear 2 or more beacons? sk
carrving food? turn to strongest outPheromone
or lowest foodCardinality

goto NEST SEARCH
Ise sense obstacle?

~ goto FOOD SEARCH execute AVOID
els else

move forward

become beacon

END lay inPheromone (VP only)
END
Fig. 4. This figure shows combined pseudocode for both the VP and

cardinality algorithms. Robots begin execution at “start” at the top
and then proceed according to which algorithm is being run and the role
(walker or beacon) of the robot. The normal food search part of the algorithm
is shown; the nest search part is nearly identical, the biggest difference
being that robots lay outPheromone instead of inPheromone. Some of the
parameters of the algorithm are shown in this pseudocode. Probability p is
currently set to 30%, angle t is 45°, and step counter n is 4.

transmits two cardinalities — one indicating how many
beacons away from the nest it is, and the other indicating
the number of beacons away from the food. Psudeocode for
the cardinality algorithm is shown in Fig. 4.

An snapshot of the cardinality algorithm is shown
in Fig. 3b. The beacon standing directly next to the nest
is transmitting a 1 for its nest cardinality, and the beacon
standing next to the food is transmitting a 1 for its food
cardinality. All other beacons are updating their cardinalities
accordingly. Now, by listening to the cardinalities and always
moving to the smallest one, the walker robots can walk to
the nest or to the food from wherever they are.

One significant difference to notice between the VP and
cardinality algorithms is that VP requires the walkers
to transmit to the beacons every time they want to lay a
virtual pheromone. The cardinality algorithm, however,
only requires beacons to transmit — the walkers only need to
receive.

III. TEST PARAMETERS AND METRICS

In this section, we will discuss the performance of each
algorithm in an obstacle—free world.

A. World and Test Parameters

The world setup, including positions of nest and food, is
shown in Fig. 8a. (See section V for results in worlds B, C,
and D.)

There are several test-related parameters which must be
chosen, such as world size, food placement, run time, and
communication radius.

o world size — World size can be non—dimensionalized
by dividing by robot body length. The robots we will
ultimately use to test this algorithm have a body length
of about 8 cm. A square world in which each side is 50
times the body length would be 4m x4m. Real ants have
a body length around 8 mm, but operate in roughly the
same size areas, so they would have a world size to body
length ratio of around 500. In this study, we use square
worlds for their symmetry and simplicity. In the future,
we may experiment with non-square worlds, or worlds
with no boundaries at all. (The presence of boundaries
makes the problem simpler by focusing the robots on
the area of interest; in a world with no boundaries, the
robots could get permanently lost.)

o robot density — The number of robots in the swarm
divided by the total world size gives the average robot
density. In this paper, we will primarily explore the
effect of this parameter, presenting results as a function
of both absolute number of robots and robot density.

o nest—food separation — This can be non—dimension-
alized by dividing by world size. In this paper, we
separate the nest and the food by a distance equal
to 60% of the world size. This gives a large enough
separation that the problem is hard, but not so large that
both the food and nest are next to the world boundaries.
In these experiments, the food piles never run out of
food.

o run time — To non—dimensionalize the run time, we
will use the number of direct nest—food traversals that
are theoretically possible during the run (assuming the
robots could travel straight to the food and back). We
will run each simulation long enough for a robot to
traverse the nest-food distance 25 times. Assuming the
robots can move approximately one body length per
time step, that would yield a run time of 750 time steps.

o communication radius — The non—dimensional pa-
rameter here is communication radius divided by body
length. With the hardware we intend to use to implement
the local communication, a ratio of 10 seems conser-
vative. So in this work, we assume a communication
radius equal to 10 times the body length, or 80 cm.

In this paper, we will focus on the effect of world size
and robot density. A study of the sensitivity of the results to
variations in the other parameters is too large to fit here, and
will be published separately.



B. Metrics

To measure the performance of the VP and cardinal-
ity algorithms, three metrics will be used:

« total food returned — The total amount of food that
has been returned to the nest by the entire swarm after
750 time steps.

« rate of food return — The average rate at which the
swarm returns food to the nest, measured in food units
per time step.

e cost — The total energy consumed by the swarm.
For the purposes of calculating this cost metric, every
communication action will incur a cost of 1 and every
movement action will incur a cost of 100. In this way,
cost is roughly analogous to battery usage. The total
cost is the sum of all the costs of all the robots for the
duration of the test.

Both algorithms will be measured using each of these
metrics.

The performance of the algorithms, as measured by these
metrics, will be compared against two comparison algo-
rithms. The first is a randomWa 1k algorithm, in which each
robot decides randomly whether to turn a random amount, or
to move forward. The second comparison algorithm is called
the foodGPS algorithm. In this algorithm, each robot has
perfect knowledge of the locations of the food and the nest,
so it is capable of turning directly to the food source and
moving in that direction, then turning directly to the nest
and returning. The foodGP S algorithm will not always yield
perfect or optimal performance because the robots may still
be blocked by obstacles or other robots (of which they have
no knowledge). The robots do not take optimal paths around
obstacles, they just know the final goal location and attempt
to go straight there, avoiding obstacles when they encounter
them.

randomWalk was chosen as a lower comparison algo-
rithm because it has the smallest requirements for communi-
cation and sensor hardware. It represents a minimum use of
coordination among robots — none. £oodGPS, on the other
hand, has very large hardware requirements. Every robot
must know the position of the food and the nest regardless
of other robots, obstacles, or distance. These two algorithms
represent extremes of hardware requirements. Our aim is to
develop algorithms with significantly increased performance
with only moderately increase hardware requirements.

IV. RESULTS IN AN UNCLUTTERED WORLD

Here we show results of the VP and cardinality
algorithms over the course of a single run and compared
across multiple runs, operating in obstacle—free worlds.

A. Performance of Algorithms over Time

At each time step during each run, we measured the total
food that had been returned to the nest, the fraction of non-
beacon robots that were carrying food, and the total number
of beacons. Data from example runs of the VP and card-
inality algorithms is shown in Fig. 5. These examples
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Fig. 5. This shows example runs of each algorithm in the world

configuration of Fig. 8A. Each run was performed with 70 robots.

were run in a 4mx4m world in configuration A (see Fig. 8)
with 70 robots. In the first 50-100 time steps, the number
of beacons rapidly increases to a steady value as the ad-
hoc network of beacons is deployed. Next, the fraction of
food-carrying ants becomes non-zero, as the first robots are
finding and picking up the food. Some time after that (about
100 time steps in these examples), the first robots are able
to return food to the nest. For the rest of the run, the amount
of food returned increases and the number of walker robots
carrying food approaches roughly 50%. It makes sense that
half of the walkers would be carrying food in steady state,
because approximately half would be on their way to the
food and half would be returning.

The major difference between the two algorithms is that
cardinality returns food faster that VP, and returns
more. VP requires time for the trail between the food and the
nest to be built and reinforced after it is found, whereas no
such time is required in cardinality.In cardinality,
once any robot has found the food, all robots know a path
to get there, and then once they pick up food, they have a
path to get back to the nest. No reinforcement is required.

B. Performance and Comparison of Algorithms

Each of these four algorithms (randomwWalk, VP, card-
inality and foodGPS) were run for 750 simulation time
steps, and the total amount of food collected at the end of
the run was recorded. The results are shown in Fig. 6a.

randomWalk never returns any food. Evidently in worlds
this big, the probability of a robot randomly finding the food
and then randomly finding the nest is so small that it never
happened in any of these tests (a brief analysis shows that
this is expected, but there is insufficient space to include it



here). With this set of test parameters, foodGPS returns a
large amount of food. cardinality and VP are in the
middle, and cardinality outperforms VP. In these tests,
the food pile can never run out of food, so there is food
available for each algorithm for the whole duration of each
run. The algorithms can never be ‘finished’, so foodGPS is
used as an optimal performance.

From this data, the effect of congestion can also be seen in
VP and cardinality. As the number of robots increases,
the performance also increases because there are more robots
available to transport food. However, when there are more
than about 100 robots, it is so crowded that they have trouble
moving and the performance again decreases. See section I'V-
C for a more detailed discussion of congestion.

The fact that VP and cardinality perform better than
randomWalk at all shows that some coordination is being
achieved between the robots using the virtual pheromones
and cardinalities. These algorithms sacrifice some robots
to be immobile beacons, and these beacons are no longer
directly picking up and dropping of food. It could be the
case that this sacrifice outweighs the benefit derived from
the virtual pheromone or cardinality. If that were so, using
the VP or cardinality algorithms at all would be harmful
and randomWalk would be better. In fact, they outperform
randomWalk, which shows that the sacrifice of some
robots to be beacons confers a net benefit on the algorithm.
Furthermore, although each algorithm uses robots as beacons
to achieve a coordination benefit, cardinality derives
more benefit from these beacons. This benefit is reduced
and eventually eliminated in both cases, however, at small
numbers of robots because in that case, the robots are mostly
used as beacons, so there are few walkers left to search for
food.

The second metric is rate of food return, and the results
for each algorithm are shown in Fig. 6b. The same trends can
be seen here in return rate as could be seen in total returned
— cardinality outperforms VP and there is a congestion
effect in which too many robots harms the return rate.

Finally, the third metric is cost. We assume that each
movement action incurs a cost of 100 and each transmission
incurs a cost of 1. In this way, cost is similar to battery usage
in the real robots, but with arbitrary units. When using this
metric, we divide it by the total food returned by the swarm
to arrive at a cost-per-food metric. The results are shown
in Fig. 6¢c. For each number of robots, cardinality is
capable of returning food at a lower cost than VP.

There also appears to be a trend in each algorithm in which
smaller swarms are more efficient than larger swarms. This is
likely related to congestion. Usually, when a robot encounters
another robot in its path, it must do an avoidance maneuver,
which requires several movement actions (a sequence of
turns and forward movements). If it had not encountered the
obstructing robot, it would have been able to simply move
forward along its desired path with a single movement action.
Because movement is expensive, and avoidance maneuvers
require more movement than simple path following, larger
swarms are less efficient because of the increased frequency
of avoidance.

100%
- S0
]
£
2 20f 9\%
—
B 1of
Rel
© 5f
S
9]
o
2_ —
1 . . . |
40 60 80 100 120
25 3.75 5.0 6.25 7.5
number of robots figa
robot density (robots /m ) 2
0.200
0.100
£33
2 g oo
(SR
3 g oo
o =
5 5 0010
o 9
T L 0005
—_
0.002
0.001 : : : :
40 60 80 100 120
25 3.75 5.0 6.25 75
number of robots fig b
robot density (robots /m ) 2
500 —
. [ foodGPS
= O cardinality
= + VP

total cost / food returned

1 L L L L L

40 60 80 100 120
25 375 5.0 6.25 75

number of robots figc
robot density (robots /m ) 2

Fig. 6. These plots show the performance of foodGPS, cardinality,
and VP as measured by the three metrics. The horizontal axes are marked
both in absolute number of robots and in robot density. randomWalk never
returns food, so it is not shown. Each point is an average of approximately
15 runs, with standard deviation error bars. Note the log scale on the vertical
axes.
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Fig. 7. Effect of congestion. When the number of robots is small it is not
a problem, when the number of robots is large, it is the dominant effect,
and there is an optimum in the middle. Each foodGPS point on this plot
is an average of approximately 15 trial runs, with standard deviation error
bars.

C. Congestion

Congestion occurs when many robots all want to occupy
the same physical space, usually when they are crowding
around the nest or the food, or on a heavily trafficked path.
This can be disruptive, because even if the robots knew where
to go, they could not go there and would have to take an
alternate rout. A crowd of robots surrounding the nest, some
of whom want to enter and some of whom want to exit, could
be less efficient than a smaller number of robots without the
congestion problem.

To measure the effect of congestion, a comparison is made
between the performance of an algorithm under normal con-
ditions, and its theoretical maximum performance if robots
were able to occupy the same physical space. The algorithm
is the same in both cases, and there is no sensor noise, SO
the difference in performance can be attributed to congestion.
The algorithm used for this test is the foodGPS algorithm.
All robots know the exact location of the food and nest,
but not other robots. The robots will attempt to move in a
straight-line path toward the food or nest, and must avoid
collisions with each other.

In the absence of physical collisions, the maximum rate
at which a swarm of robots could return food to the nest
would be fzvzls’ where f is the amount of food each robot
can carry, n is the number of robots in the swarm, s is the
distance each robot can travel in one time step, and d is
the distance between the food and the nest. (d is doubled
because the robots must travel to the food and back.) This
rate is measured in food units per time step.

To test the effect of congestion, the foodGPS algorithm
was run several times with different numbers of robots, and
the rate at which food was returned to the nest was measured.
The measured rate is then compared against the theoretical
maximum, and the result is plotted in Fig. 7. At small
numbers of robots, congestion seems to have little effect as
the measured performance and the congestion-free maximum
are close. This makes sense because there are so few robots
in the world that they seldom run into each other and have to
spend little time walking around each other. As the number
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Fig. 8. There are four world configurations used in this paper. Results from
configuration A are discussed in section IV, and results from configurations
B, C, and D are discussed in section V. The obstacle field of configuration D
is an area with many small obstacles obstructing simple straight line paths.

of robots increases, congestion becomes more and more of
a problem, and eventually, there are so many robots that
congestion is the dominant effect and robots have so much
trouble moving around that they have little ability to actually
do the task.

V. TESTS AND RESULTS IN WORLDS WITH OBSTACLES
A. Description of Obstacle Configurations

In this study, we used three different obstacle configura-
tions, in addition to an obstacle-free world. All configurations
are shown in Fig. 8. In configuration B, a simple obstacle
blocks the most direct path from the nest to the food,
such that the swarm must find a path around the obstacle.
Configuration C has two obstacles that require the robots to
take a more complex curving path to get to the food and
back. Configuration D gives the swarm a choice between
two paths: a short path that goes through an obstacle field,
or a long but clear path.

VP, cardinality, and foodGPS do obstacle avoid-
ance in nearly the same manner. Each walker robot has
a direction it wants to go, determined either by virtual
pheromones, cardinalities, or just knowing the correct di-
rection (in the case of foodGPS). For each of these three
algorithms, when a robot encounters an obstacle, it attempts
to avoid it, usually by simply turning left and moving
forward.

The performance of foodGPS can be used as a measure
of the difficulty of each obstacle field. Taking the foodGPS
result as a type of performance standard for each obstacle
field, we can use it to normalize the performance of the
other algorithms. So, for each algorithm and obstacle field,
we will normalize the performance to the performance of
foodGPS on that obstacle field. Results of these normalized
performances are shown in Fig. 9. These algorithms do
quite well compared to foodGPS considering their hardware
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Fig. 9. This figure shows the amount of food returned by each algorithm in
each obstacle field, normalized to the amount of food returned by foodGPS
on that obstacle field. For example, in the single obstacle environment,
cardinality returns about 12% of the food that foodGPS does.

requirements. f£oodGPS requires all robots to have global
knowledge, and cardinalitycan achieve a fraction of that
performance (about 5% - 20%) with no global knowledge or
communication at all and only simple local communication.

cardinality has been observed to behave well in the
case of changing obstacle configurations. When an obstacle
is removed, for example, cardinality robots find a new
shorter path. Space limitations prevent inclusion of results;
they will be published in the future.

VI. CONCLUSION

This paper is concerned with leaderless distributed al-
gorithms for swarms of robots. We have presented two
algorithms, the Virtual Pheromone (VP) algorithm and the
cardinality algorithm, which allow swarms of robots
to forage for food in an unknown environment without
central leadership. These algorithms do not require deposit-
ing real pheromones or beacons in the environment, rather
the pheromone is an analogy for the way information is
transmitted between robots.

VP and cardinality both performed better than
randomWalk, which indicates that they were able to
achieve some coordination benefit from the beacons. These
algorithms were also generally returned food in the presence
of obstacles. Congestion was observed to be a significant
effect, in which increasing the number of robots in the
increases improves the performance up to a point, but then
decreases the performance as the robots have to spend so
much time avoiding each other.

There are several additions to these algorithms that will be
studied in future work. One obvious way that the cardinality
algorithm could be improved is to reclaim useless beacons
for use as walkers. After the swarm has found the food and
robots are busy returning it, the beacons on the periphery of
the field could abandon their role without negatively affecting
the swarm. If there are only beacons along the food—nest
path, however, then a robot who gets lost will have no way
to return to the swarm. In the future, we will study ways to
reclaim useless beacons without impairing the functionality
of the swarm.

A paralel line of future development will focus on the
hardware required to implement the communication model
described in this paper. A preliminary prototype has been de-
signed and built, and testing is under way. The ultimate goal
is to interface the communication structure with the Khepera
hadware. This project also fits into a larger micorobotics
research effort. These algorithms are designed with a focus
on minimal hardware partially because we envision them
running on microrobotic insects. Such microrobotic hardware
platforms are currently under development at the Harvard
Microrobotics Lab [20].
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